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Abstract

Recent SOFC stack development efforts at AlliedSignal have been focused on
demonstrating operation and performance at reduced temperatures (600 @).880cost-
effective process based on tape calendering has abeen developed for making reduced-temperature
thin-electrolyte cells, and a stack design concept for this application has been evaluated. Use of
thin-electrolyte cells reduces stack internal resistances, thus permitting efficient operation at lower
temperatures. The proposed stack design incorporates thin-electrolyte cells with metallic
interconnect assemblies (made from thin foils) to form a compact, lighweight structure. SOFC
stacks based on this design have demonstrated excellent performance and high power densities.

To date, tape-calendered SOFC stacks of up to ten-cell height and 200-cm footprint area
have been fabricated. Stacks of various sizes have been tested and have shown excellent
performance at reduced temperatures. For example, the power output of a two-cell stack (25-cm
footprint area) is about 26 W at 80CG with hydrogen fuel and air oxidant (power density of
670 mW/cnm ). A five-cell stack (100-éfootprint area) produces about 270 W at 8Q0
(600 mW/cn Jand 170 W at 700C (375 mW/cm ). High stack power densities (1.03 kW/kg
and 0.90 kW/L at 800C) have been demonstrated.

This paper discusses the development status of the tape-calendering process and the
fabrication and operation of tape-calendered stacks at reduced temperatures.
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Tape Calendered SOFC Stack Development

e Approach
— Reduced - Temperature Operation
— Tape Calendering for Cell Fabrication
— Stack Design
 Low Cost
 High Performance
e Light Weight and Compactness
 Funding
— GRI (Dr. Kevin Krist)

— DARPA (Drs. Larry Dubois, Robert Rosenfeld, Robert
Nowak)
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Reduced-Temperature SOFCs

Operating Temperature of 600° - 800°C

Conventional Materials with Thin YSZ
Electrolytes

Key Advantages

— Wider Material Choice
— Increased Cell Life

— Reduced Fuel Cell Cost
— Improved Reliability
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Stack Configuration
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Design Features

Thin-Film Electrolytes to Permit Efficient
Operation at Reduced Temperatures

Lightweight Metallic Structures to Achieve
High Power Densities

Low-Cost Materials and Fabrication
Processes
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Stack Assembly Processes

Interconnect
Assembl
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Thin-Electrolyte SOFC
Fabrication Sequence

Tape Forming Forming Rolling

O Thin Electrolyte
m. i ’___ Electrolyte " Bilayer Bilayer . on Anode Layer
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— Anode

Cathode Application Cuttlng
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Photograph of Single Cell

CATHODE
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Thin Electrolyte Cell

LaMnO; Zro, NiO/ZrO,
Cathode Electrolyte Anode
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Voltage, V

Performance of Thin-Electrolyte Single Cell
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Ten-Cell Stack

~ AlliedSignal

AEROSPACE

SOLID OXIDE
FUEL CELL

105684-2
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Power Density, mW/cm?
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Power Density Curves of
Two-Cell Stack
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Performance of Two-Cell Stacks
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Performance Curves of Five-Cell Stack

100-cm2 Footprint
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Performance Curves of Five-Cell Stack
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100-cm2 Footprint

0.2

0.4

300

250

200

¢
00‘

¢

¢ Voltage (V) Fuel: Hydrogen
Oxidant: Air g ¢
® Power (W) :
Temperature: 800°C

0.6 0.8 1.0 1.2
Current Density, A/lcmz2

Power, W

M-05786.PPT



@IliedSignal

AEROSPACE

Stack Power Densities

1 kwWwkg  1.03kWlkg 1 kKWI/L
0.9 kWi/L

Goal Power Density Goal Power Density
Achieved to Date Achieved to Date
at 800°C at 800°C
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Technological Issues

Performance Losses in Stacking
Sealing

Thermal Cycling

Life
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Summary

« Reduced-Temperature Operation
Demonstrated (e.g., 5-Cell Stack,
100-cm2 Footprint. 270 W at 800°C)

 Excellent Stack Performance
Achieved at Reduced Temperatures
(e.g., 600 mW/cm? at 800°C)

e Several Issues to Be Addressed
(Performance Losses in Stacking,
Sealing, Thermal Cycling, Life)
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